
University of Szeged

Faculty of Science and Informatics

Bachelor’s thesis

Lajos Rajna
2021

1

University of Szeged
Faculty of Science and Informatics

Development of a cross-platform 2D video game
engine using MonoGame framework

Bachelor’s thesis

Author: Advisor:
Lajos Rajna Dr. Peter Bodnar

Computer Science student Assistant professor

Szeged
2021

2

Goal setting

The goal of this thesis is to cover the basics of 2D video game engine creation, without any

platform-specific code or solutions. The engine will utilize the MonoGame framework, which

was initially an open-source reimplementation of Microsoft’s XNA game development

framework, but has evolved since then and became a platform-independent 2D and 3D library,

providing the basic functionalities for cross-platform video game development with an MIT

license.

3

Summary
● Project name:

Creation of a free, cross-platform, open-source, 2D video game engine. The student’s task is to

create and demonstrate a working video game engine fulfilling the above criteria.

● Description of the task:

Although there are numerous commercial video game engines available, all of them lack at least

one of the four criteria: free, open-source, cross-platform, and has good 2D performance. The

task is to create a video game engine that fulfills these criteria and provides the most common

functionalities needed to create video games.

● Solution:

Creation of the above mention video game engine using MonoGame framework and C#

language. The MonoGame framework provides low-level, cross-platform functionalities while

C# will allow the creation of the engine’s components.

● Tools and methods:

C# languange and MonoGame framework.

● Results:

A fully functional engine has been implemented that encapsulates the most common

functionalities that 2D video games need and satisfies all four initial criteria. Furthermore, a

short 2D platformer video game sample is included in the project to demonstrate the engine’s

capabilities.

● Keywords:

MonoGame, C#, 2D, performance, cross-platform, open-source, video game engine

4

Table of contents

Goal setting 3

Summary 4

Terminology 7

Notations 7

1. Motivation, solution, and tools 8
1.1 Solution 9
1.2 Tools used to achieve the goal: 10

1.2.1 C# 10
1.2.2 MonoGame 11

1.3 General approach for video game engine development 13
1.4 Achievements 16

2. Implementation of the game engine 17
2.1 The game loop 17
2.2 Rendering 26
2.3 Camera 28
2.4 Layers 29
2.5 Scenes 31
2.5 Entity and PhysicalEntity 32
2.6 Components 34
2.7 Collisions 35
2.8 Triggers 36
2.9 Sprite 36
2.10 Animations 37
2.11 AI 39
2.12 External map editor integration 43
2.13 UI 48
2.14 Entry point of the game 50
2.15 Audio 50
2.16 Assets 50

3. Other noteworthy classes 51
3.1 Timer 51
3.2 MathUtil 51
3.3. Logger 51
3.4 AssetUtil 51

5

4. The future of the project 52
4.1 Object pooling 52
4.2 Particle system 52

5. Acknowledgements 53

6. Literature used for the work 53

Declaration 54

6

Terminology
● Indie: an independent video game developer entity. It can be one person or a small team,

usually not funded by any major company.

● Video game engine: the source code responsible for running the game including

rendering, audio, physics (if applicable), inputs, and any other code piece that somehow

contributes to the game experience. It can be a generic, commercial engine or a smaller

piece of code written to run one specific game.

● Sprite: a 2D image drawn on the screen

● Asset: a 2D image, 2D/3D model, animations, music, scripts, visual and audio effects,

artworks, fonts, and any other digital product that a video game contains

● Axis aligned: an N-dimensional object whose shape is aligned with the coordinate axes

of the space.

● SpriteBatch: a group (or batch) of 2D images that will be drawn with the same settings

by the GPU

● AAA video game: video games developed with a high budget, usually involves a bigger

team that includes engineers, artist, musicians, animators, etc., published by a big

company

● FPS: frame/second, the number of frames that the hardware produces in one second

● NPC: non-player character: friendly video game characters controlled by an AI (like

citizens of a town, etc.)

● Platformer game: also commonly referred to as “side-scroller” game, a video game

where the character can move around in the 2D space, typically moving from left to right

using jumping and other functionalities to complete the levels. The most commonly

known example is the Super Mario Brothers.

Notations
● Consolas font: source code snippets

● Italic: Method, class, or variable names embedded in the text, referring to the source code

or an example code snippet

● *.cs: every C# source code file in the directory

7

1. Motivation, solution, and tools

In the early days of video game consoles and personal computers, video game developers were

mostly solo developers, or small teams, working a video game in their free time or using their

savings or mortgages to fund the development costs. Once video games started to become

popular in the next decades, the industry was taken over by big publishers who had the funds and

the knowledge base to create high-quality video games with budgets that indies never had. By

the early 2000s, almost all popular video games were created by an established publisher.

Engines for video games were either written in-house by each studio, or were licensed from

another major company for hundreds of thousands, or even millions of dollars. Independent

video games slowly got suppressed out of the video game landscape and AAA titles took over

the market.

By around 2010, the situation had started to shift in favor of independent developers again.

Technology companies have realized that making video game engines publicly accessible for a

small fee is much more lucrative than just selling the license for a few other companies. The

technology and programming languages have also evolved to a level where it was much easier to

make video games again by one person or a small team, development kits for video game

consoles became affordable, and having high-speed internet in most households also contributed

to the fact that small teams did not need to be backed anymore by big publishers to distribute the

products on CDs and DVDs, but they could just release their game fully digitally in online stores

and players would download the purchased games. Digital markets are becoming bigger and

bigger these days, and although optical discs are still present and have a major share in sales,

digital downloads have now taken over in the number of overall sales and are expected to

continue their growth in the future as well.

One more factor that might have contributed to players turning their attention to independent

video game development was the diversity of games. Major developer companies usually stay on

the safe side and only release games that are highly likely to become a financial success, whereas

in many cases, independent developers tend to take a much higher risk to pursue a vision to

create something original. It was not uncommon that a game idea was rejected by different

publishers, but the development got funded via crowdfunding and became a huge success after

release. This takes us to the last point contributing to the new age of independent game

8

development: the publicity and general trust towards crowdfunding. Lots of video games get

funded via crowdfunding websites like Kickstarter and IndieGoGo. In general, people seem to

appreciate the effort put into video games and are willing to take the risk of supporting a video

game that is still under development. This opened up the possibility not just for creating small

games, but in many cases, huge funds are donated towards a popular game, much more than the

developers originally asked for and they deliver an AAA quality product without the help and

influence of a publisher.

My goal is to create a cross-platform engine that has good 2D performance on low-end hardware

(older smartphones), open-source, and completely free to use.

When looking at the commercial engines publicly available, although they are great, each engine

lacks something of the above-mentioned 4 criteria.

1.1 Solution

Using the MonoGame framework and C# language, I am going to implement a 2D video game

engine that would fill the gap in the video game engine landscape by fulfilling the

above-mentioned 4 initial criteria: maximized 2D performance and usability, open-source, free

and cross-platform.

Challenges I faced during my work:

● To implement the aforementioned functionalities in a platform-independent, effective

way with good performance and high reusability

● To create an engine that is easy to understand for newcomers but complex enough to

support almost any 2D game.

● To be generic, but still provide the basic functionalities for most genres: It can be

challenging to decide what should be part of the engine and what should be coded by the

game developer: in general, I did not include any genre-specific code in the engine, I

tried to be as generic as possible. The only exception is supporting gravity, which is part

of the physics engine and although not all games need it (like top-down RPGs or strategy

games), it’s still such an important part of most games that I implemented it natively. The

game developer can turn it off if it’s not needed. In the future, I will provide a GameUtils

9

extension library to implement basic, genre-specific functionalities that can be used

modularly, but not part of the engine’s core itself (like 2D pathfinding, shaders, etc).

● To decide what to support natively: for example complete, realistic physics are extremely

hard to implement and are not needed by most 2D games at all. But there are open

source, third-party libraries available to provide such functionality, the developers can

use these with the engine as needed. But a basic, axis-aligned physics is included that is

sufficient for most 2D games.

● To find the balance between high-level development workflow and low-level control: the

reason why most people use game engines is that they would not like to “reinvent the

wheel”, they would like to code on a high level focusing on the game itself and avoid any

low-level code that is responsible for rendering, physics, etc. On the other hand,

developers that would like to have access to such low-level operations for any reason

should be allowed to: while it is completely possible to create a game in the engine

without using low-level code, it is always possible to override methods responsible for

low-level operations and extend/reimplement them or parameterize classes in an

advanced way to gain a finer level of control.

1.2 Tools used to achieve the goal:

1.2.1 C#

C# hardly needs an introduction for anyone with software engineering knowledge: it’s a

multi-purpose, multi-paradigm programming language, part of Microsoft .Net initiative to create

programming languages that run on multiple platforms. This was achieved by Mono: a free and

open-source project that allows the development of cross-platform compilers and runtime

environments for the language. C# is a managed language (uses garbage collector) that offers

Java-like high-level programming while simultaneously allowing low-level operations, like out

parameter types (reference passing) and pointers (if the unsafe mode is allowed), therefore a

perfect candidate for a video game engine programming language: easy to understand for

beginners while low-level enough for professionals.

10

1.2.2 MonoGame

In 2004, Microsoft announced their game developer toolset called XNA targeting Windows and

Xbox 360 platforms, the first public build was released in 2006. The framework relied on C#

language and provided basic functionalities for video game development, unifying the

development pipeline for PC and console: apart from some inevitable platform-specific changes,

the games created with XNA ran on both Windows and Xbox 360 platforms. In 2010, Microsoft

extended XNA to support Windows Phone as well. XNA became popular between indie

developers and video game studios and hundreds of games got published using the framework,

the estimated count of the developers using it was over 10.000. In 2013, Microsoft has officially

announced the discontinuation of XNA, and although the reasons were never stated, most

probably it was because of the following:

● They were not able to reach a target audience big enough. The framework, being very

low level, was too difficult for beginners, and for professional developers, porting their

games for non-Windows platforms was very expensive.

● The quality and quantity of the commercially available cross-platform game engines

started to rise which, and in many cases, proved to be a more cost-effective alternative to

XNA, and they were also more beginner-friendly.

However, there was still a significant mass of developers who already had the XNA framework

knowledge, games were already under development using it, and even while XNA was still

actively developed, in parallel, MonoGame, an open-source reimplementation of the XNA API

appeared in 2009. The original goal was to reimplement the API so that games that were written

using XNA would work without a change, but would also run on non-Microsoft platforms, and

developers also had access to MonoGame’s source code in case they wanted to customize it,

which was not the case for XNA. After XNA got shut down by Microsoft, the importance of

MonoGame has started to grow, as well as the project. Initially, MonoGame only had 2D

capabilities, which after years of development, evolved into a fully functional, cross-platform 3D

development library that became widely popular and corrected XNA’s shortcomings. The former

XNA developers were still active, and a vivid community prospered leading to the framework’s

popularity, especially among independent developers. Hundreds of games have been published

11

using MonoGame on all major platforms, many of them became huge successes and were

recognized by both the players and the critics. MonoGame is still actively being developed today

and its popularity keeps rising not just because of its capabilities, but because the C# language is

a great language for video game development: it’s managed, so the developers don’t need to care

about memory management if they don't want to, but also support low-level operations.

Functionalities provided by MonoGame:

● Draws 2D images and renders 3D models on the display (supports both OpenGL and

DirectX)

● Offers built-in effects (shader) system called MGFX which runs on all platforms

● Propagates input from the keyboard, mouse, controllers, and other input devices

● Supports playing audio files

● Provides an implementation of the most important mathematical concepts

Functionalities that MonoGame does not provide, and will be the topic of this thesis:

● Camera

● Physics engine

● 2D animations

● Abstraction for video game entities

● Collisions

● AI

● Any video game logic related code

● Support for external map editors

● Texture caching

● Scene management

● UI capabilities

● Particle system

● Caching, pooling

These are the most important components of a 2D video game engine that allows almost any

game to be created, therefore I focused on the general, efficient implementation of these. Due to

12

time restrictions, the particle system and object pooling did not get implemented, I chose to

postpone these as without them, the engine is still fully functional. Since this project isn’t just my

bachelor thesis, but my own product as well, with which I’m planning to release video games,

the missing components will be added in the near future.

1.3 General approach for video game engine development

Developing a video game engine is similar to an API development, where the target audience is

also professional software engineers or hobby programmers, therefore the code must have certain

standards that programs targeting non-IT people don't necessarily have to. For example,

developing an average mobile application or a desktop application, in many cases, doesn’t need

to be optimized above a certain level as the developer can simply define minimum hardware

requirements. In many cases, they are also not that performance-sensitive, therefore optimization

above a certain level is considered overengineering and might be a waste of development

resources: generally, the users won’t notice the difference between an action (like a button press)

taking 0.5ms or 0.05ms. Having a 0.5 response time in an average application may already be

achieved by the initial release of the software while optimizing it to 0.05ms might take up

enormous resources without any real benefit or business value.

Web API and video game engines are different: for web API, the code must be ready to serve as

high volume of requests as possible with high efficiency, and a video game engine must be able

to produce frames as frequently as possible. Also, the code must be prepared for high reusability,

the engine should not restrict the developer in what they can achieve and should not limit them in

any way. The programming techniques described below can be used to achieve high performance

and usability.

Avoid duplicated work, use caching instead

Whenever possible, try to store and reuse the result of previous calculations instead of

recalculation. Memory is usually not a bottleneck in any gaming platform, especially when

developing a 2D game, where the assets are typically much smaller in size compared to a 3D

game and takes up much less space in the memory, allowing us to efficiently cache data.

13

Prefer callbacks instead of polling

Whenever possible, implement callbacks to trigger certain events instead of continuously

checking whether events should occur. This is also partially avoiding duplicate work: if

component A in the game has calculated collision with component B, let the collision be

triggered in both component A and B instead of B checking for the same collision in its own

update loop.

Choose the right data structures

Choose the data structure according to your current needs and keep your asymptotic runtime as

low as possible. For example, when storing data in a collection that will be used for lookups, it’s

better to keep it in a Set or Dictionary as the lookup speed is O(log(N)), rather than using lists

where the lookup takes O(N). For this to work efficiently, we also have to choose our keys

carefully: keys must be hashed and compared quickly to guarantee fast lookup. Also, many

times, we have to modify a collection while iterating through it (for example, we are calling the

Update loop on our list of objects and a new object gets created and added to the same list of

objects). A common mistake to avoid exceptions coming from modifying the list while iterating

through it is always creating a copy of the list for the iteration for each Update method call and

add the new object to the original list. While this works, it has bad performance as the list will be

copied in each Update call, maybe hundreds of times/second. Instead, let’s store the newly

created or removed object in a separate list and add/remove these objects once we have finished

iterating through our list of objects (and don’t forget to clear the list that holds new/deleted

objects). As creating/removing objects usually isn’t happening in such high volume, it’s much

faster than continuously copying our list of existing objects.

Preload and cache assets whenever possible

If the memory allows, preload and cache the game assets (graphics, audio, maps, etc) instead of

using them on a lazy-load basis. Typically, players prefer waiting longer during the game startup

over having to wait for assets to load during gameplay, which disrupts the experience.

14

Use a fixed update loop and interpolation

Video games need to run several components to provide gameplay, including collision detection,

AI, physics, cross-interaction, etc. A modern CPU can do these hundreds or even thousands of

times/second, but it’s unnecessary. For an average game, doing these calculations 30

times/second is enough, anything more than this has no effect on the gameplay, but puts a high

burden on the CPU, which is mostly a problem for mobile phones and other handheld gaming

consoles: high CPU utilization leads to battery drain and can heat up the device quickly. Doing

the expensive calculations only 30 times/second and calculating the rest of the frames with a

much cheaper interpolation is much easier on the hardware and does not affect the player’s

gameplay experience at all.

Keep the number of Draw calls at the minimum

Each Draw() call on a SpriteBatch adds load to the GPU. Implement the engine in a way that it

operates with as small amount of Draw() calls as possible.

Optional, dedicated, decoupled components

The components of the engine should be responsible for only one thing and do that as efficiently

as possible. It must be obvious for a game developer what a component does for and how to use

it. Also, components must be decoupled, the game developer should be able to add and remove

individual components dynamically as needed, and there should be no dependency between

them.

Generalized code, abstract classes, interfaces, generic classes

The code should be written in a generic way to support the widest variety of usages. Using

interfaces, abstract and generic classes is a great way to maximize reusability and hide the

internal structure of the engine, while also giving an opportunity to redefine certain behaviors of

the superclasses when it makes sense.

Hide the unnecessary and internal functionalities

Interfaces, abstract classes, and inheritance is a key technique to define what the game developer

should have access to. In general, only those classes, functions and variables should be visible

15

for the game developer which can somehow be relevant for the game development process:

provides functionality, configures/alters the behavior, or provides an opportunity for an override.

Classes, variables, and functions intended strictly for internal use should be hidden with the

proper access modifier (private, internal, sealed). This avoids confusion and prevents misuse.

The ‘internal’ visibility in C# is a great tool to create a variable visible everywhere from the

same binary, but not externally (acts as ‘public’ in the engine source code and as ‘private’ in the

video game source code)

Prefer performance over other human-centered code metrics

Although the human aspect of code quality is always important, for programs like game engines,

where performance is critical, especially in the most calculation-heavy components, performance

must be preferred over other general code metrics. For example, if a frequently called operation

can be done much faster using bitwise operations than regular +,-,*,/, etc. operators, prefer the

binary ones, even if it makes the code harder to understand for other people. This goes against

usual application development standards, where, if it’s not a performance-critical application,

simplicity and human readability is often more important than writing the given piece of code as

efficiently as possible, if that would result in a code that is very hard to understand and therefore

hard to maintain and support.

1.4 Achievements

Apart from the particle system and object pooling, at the time of writing this thesis, all the

above-mentioned components got implemented. The engine is functional, a platformer game

demo demonstrates the capabilities and usability. Although the game itself has been tested on PC

and Android platforms, only the PC version is publicly available as of now. Below I will describe

the most important components and solutions of the engine.

16

2. Implementation of the game engine

2.1 The game loop

Implementation: Engine/Source/Game/MonolithGame.cs

The main loop of the engine is driven by MonoGame: Update(GameTime gameTime) and

Draw(GameTime gameTime) calls follow each other repeatedly as long as the game is running.

They are always next to each other: there are never two consecutive Update() or Draw() calls.

The gameTime input parameter stores how long the game has been running and how long did the

previous frame took to render, both can be obtained in different time units from the parameter

(millisecond, second, etc). The frequency of these calls is driven by the capabilities of the

hardware: the more frames the hardware can produce, the more calls will be made in each

second. Typically, mobile phones and video game consoles run video games with a fixed 30 or

60 frames/second upper cap, while a modern PC can produce even thousands of frames/second.

This leads us to our next problem: providing the same experience with variable frame rates.

Let’s say we want to move an object on the screen with the following code:

/*

Vector2 is a struct in MonoGame, where the (3,5) means 3 units on the X-axes and 5

units on the Y axes. The addition, subtraction, multiplication, and division

operators are overloaded to work between Vector2-Vector2 and Vector2-decimal data

types.

*/

private Vector2 acceleration = new Vector2(0, 1);

private Vector2 velocity = Vector2.Zero;

public void Update(GameTime gameTime) {

velocity += acceleration;

object.Position += velocity;

}

MonoGame uses a left-to-right, top-to-bottom coordinate system: the top left corner of the screen

is at position (0,0), and the X coordinate increases by moving right on the screen, the Y

coordinate increases by moving down on the screen.

17

If a game is running with 30 FPS, the object on the screen will move 30 units/second, but on

another system, if the game is running with 120 FPS, the object will move 120 units/second,

which is an entirely different behavior and makes the game unplayable on any other frame rate

than it was designed to.

Solution: Semi-implicit Euler method

Source: https://gafferongames.com/post/fix_your_timestep/

In many video games and engines, this is the preferred solution for the above-mentioned variable

framerate problem.

What is velocity? The rate of position change over time:

𝑑𝑥/𝑑𝑡 = 𝑣

This means that if we know the position and velocity of an object, we can calculate the integral

to find its position at some point in the future.

The semi-implicit Euler method can help us to solve a system of ordinary linear equations, but

instead of calculating the integral, we are going to numerically solve it. The above equation can

be rewritten like this, let dt be delta time:

velocity += acceleration * dt;

position += velocity * dt;

Leading us to the following implementation of the movement:

private Vector2 acceleration = new Vector2(0, 1);

private Vector2 velocity = Vector2.Zero;

public void Update(GameTime gameTime) {

// let dt be the total time it took to render the previous frame

float dt = gameTime.ElapsedGameTime.Milliseconds;

velocity += acceleration * dt;

object.Position += velocity * dt;

}

If a game runs with 30 FPS on a system, the value of dt will be 33.3 (it takes 33.3 milliseconds to

render one frame). The movement in 1 second:

18

https://gafferongames.com/post/fix_your_timestep/

30 (framerate) * 33.3 * 1 = 999.

This means that the game object will move 999 units in 1 second with 30 FPS.

If the game runs with 60 FPS on a different system, dt will be 16.6 and the movement in 1

second:

60 (framerate) * 16.6 * 1 = 996.

Although, because of the rounding, these values are not exactly the same, it’s close enough for

most video games. By changing the value of acceleration, we can change how fast the object

moves on the screen and it will look the same on all systems, regardless of the framerate.

This fixes the movement of an object with variable framerate but does not solve all the problems

we can encounter with variable frame rates. Some physics simulations can behave differently due

to different delta-time values, from having a slightly different feel of the game to a spring

exploding to infinity.

Solution 1: limit the FPS.

Many games choose the approach of having an upper bound of how many frames the engine will

render in each second. If we cap the framerate to 30 or 60 FPS, there will be no big delta-time

differences between different systems and the game will behave predictably and the differences

in the physics will be subtle to non-existing.

Although this approach works, it limits the player’s gameplay experience. Today’s computers

can generate thousands of frames/second and high-end gaming monitors can operate up to 240

Hz, meaning that they can display 240 frames/second. Even a person that does not play video

games can easily tell the difference between 30 FPS and 60 FPS gameplay just by the fluidity of

the rendering, but an experienced player will notice frame rate differences on even higher values,

and if we limit the framerate of the game, they won’t be able to utilize their hardware properly

and we deprive the game itself of its full potential, therefore, we are going to choose a different

solution.

19

Solution 2: fixed timesteps

Instead of capping the rendering of the game, let’s introduce a new type of update method that

will be called with a fixed frequency of 30 times/second, regardless of how fast hardware can

render and do game logic updates in it. I will call it FixedUpdate() and will refer to it like that for

the rest of the thesis.

Introducing the FixedUpdate() will benefit us in the following ways:

● Physics simulations will be predictable and will behave exactly the same way on each

hardware, regardless of how many frames can be rendered on each system.

● Running a game can require a series of complex, hardware-heavy calculations which, in

the normal Update() loop, would be calculated as many times as the frames rendered,

which is not just unnecessary, but also puts a load on the CPU.

For example, there is no point in running hundreds, or maybe thousands of collision

checks, physics updates, etc. for an average game. Let’s take this one step further: there is

no point in running most gameplay related logic more than 30 times/second, as the users

won’t notice it, but it would put a heavy load on the CPU, which is especially a problem

for mobile phones and handheld gaming consoles: it drains the battery very fast and can

heat up the device.

In this engine, we will compute the CPU-heavy computations only 30 times/second

(configurable) and do an interpolation for the in-between frames, so players will still

experience smooth gameplay while going easy on the CPU.

The FixedUpdate() loop will be implemented the following way:

We are going to measure the elapsed time of the game in an accumulator variable in the normal

Update() method. Whenever the value of this variable is higher than our configured

FixedUpdate() frequency, we are going to run one FixedUpdate() call and decrease the value of

the accumulator by the frequency. This guarantees that the FixedUpdate() will be called

whenever it’s due, maybe even multiple times to compensate for the accumulated time fractures

resulting from doing a discrete event in continuous time. We are also going to maintain a value

called ALPHA, which will be used for linear interpolation. ALPHA will have a range from 0 to 1

to measure how far we are until the next FixedUpdate() call. For example, ALPHA value 0.2

20

means we are 20% in the current call, we had a FixedUpdate() recently, and ALPHA value 0.5

means we are exactly halfway between the last and next upcoming FixedUpdate() calls.

From now on, we will move our object in the FixedUpdate() call instead of the regular Update()

call.

// this will be the FixedUpdate() frequency, we set it to 30 FPS

private float fixedUpdateDelta = (int)(1000 / (float)30);

// helper variables for the fixed update

private float previousT = 0;

private float accumulator = 0.0f;

private float maxFrameTime = 250;

private float ALPHA = 0;

override void Update(GameTime gameTime)

{

// only relevant in the very first call

if (previousT == 0)

{

previousT = (float)gameTime.TotalGameTime.TotalMilliseconds;

}

float now = (float)gameTime.TotalGameTime.TotalMilliseconds;

float frameTime = now - previousT;

if (frameTime > maxFrameTime)

{

frameTime = maxFrameTime;

}

previousT = now;

accumulator += frameTime;

while (accumulator >= fixedUpdateDelta)

{

FixedUpdate();

accumulator -= fixedUpdateDelta;

}

ALPHA = (accumulator / fixedUpdateDelta);

base.Update(gameTime);

}

public static float fixed_dt = 1;

21

public void FixedUpdate() {

velocity += acceleration * fixed_dt ;

object.Position += velocity * fixed_dt;

}

And the Draw() method would look like this:

protected override void Draw(GameTime gameTime)

{

GraphicsDevice.Clear(Color.White);

spriteBatch.Begin();

spriteBatch.Draw(object.Texture, object.Position, Color.White);

spriteBatch.End();

base.Draw(gameTime);

}

Notice that we have set the fixed_dt to 1. In the FixedUpdate(), elapsedTime is meaningless as

the frame times are always the same. But if we multiply with fixed_dt everywhere in the code

where we would normally multiply with the real elapsedTime, we can later change the value of

fixed_dt to a lower value to create a very cool bullet-time effect! Bullet-time is an effect that

became widely known from the movie Matrix: it’s the effect where the time slows down. If we

change the fixed_dt to 0.5, everything will move/happen 50% slower in the game.

Let’s inspect how our program behaves now. Assume that the FixedUpdate() is configured to 30

FPS and the game itself is rendered at 120 FPS. This how the event flow would look like:

FixedUpdate(): updating the position of the object to (100, 100)

Draw(): drawing the object at position (100, 100)

Draw(): drawing the object at position (100, 100)

Draw(): drawing the object at position (100, 100)

Draw(): drawing the object at position (100, 100)

FixedUpdate(): updating the position of the object to (100, 120)

Draw(): drawing the object at position (100, 120)

Draw(): drawing the object at position (100, 120)

Draw(): drawing the object at position (100, 120)

22

Draw(): drawing the object at position (100, 120)

FixedUpdate(): updating the position of the object to (100, 140)

Draw(): drawing the object at position (100, 140)

And so on…

How would this look on the screen? Even though the computer renders 120 frames each second,

we only update the position of the object 30 times/second. This means that the object will be

drawn in the same position for 4 consecutive frames until FixedUpdate() is triggered and updates

the position again. So the player will see that although the computer is rendering with 120 FPS,

the gameplay feels like 30 FPS.

Solution: linear interpolation.

Instead of drawing the object to the actual position, let’s do a linear interpolation between the

previous position and the current position using the ALPHA value described earlier.

Let’s modify the FixedUpdate() method to save the previous position of the object:

public static float fixed_dt = 1;

public void FixedUpdate() {

object.PreviousPos = object.Position;

velocity += acceleration * fixed_dt ;

object.Position += velocity * fixed_dt;

}

And let’s change the Draw() method to draw to the interpolated position:

protected override void Draw(GameTime gameTime)

{

GraphicsDevice.Clear(Color.White);

Vector2 drawPosition = Vector2.Lerp(object.PrevPosition, object.Position, ALPHA)

spriteBatch.Begin();

spriteBatch.Draw(object.Texture, drawPosition, Color.White);

spriteBatch.End();

base.Draw(gameTime);

}

23

This will result in smooth rendering, as, instead of rendering the object onto the same position 4

times, we will interpolate its position according to ALPHA value and draw it onto this

interpolated position, which is different in every frame.

The player is experiencing smooth gameplay while the update is happening only 30

times/second.

Why do we do this interpolation instead of just simply using the Update() method to update the

object’s position more frequently? Because in an actual video game, determining the position is

often the result of a series of very expensive calculations: collision detection, physics,

object-to-object interactions, AI, and so on, and running these expensive calculations only 30

times/second results in a predictable behavior with as low CPU usage as possible, while, thanks

to the interpolation, the user will still experience smooth gameplay not even knowing that the

game logic is only updated with 30 times/second. And, as described above, lower CPU usage

means lower power consumption, resulting in longer battery life and less heat.

However, there is one challenge to solve when using FixedUpdate(): collision detection.

Detecting collisions is a discrete calculation, which means that it always happens at the current

position of the object. If we are running the game logic in a FixedUpdate() configured to 30

calls/second, it also means that we are only doing 30 collision detections/second. While this

might seem good enough for some games, many video games have fast-moving objects (like

bullets), where the positions change quite a lot from one FixedUpdate() to another, and this

change in position might be bigger than the size of the collider, meaning that we skip some

collisions. This is a problem because if the player is shooting at a small enemy, the collision must

be detected.

Solution 1: Increase the FixedUpdate() frequency

While this might work for certain games, where the colliders are relatively big and the objects’

movement speed is capped, in general, this is not a good solution. Even if we increase the

FixedUpdate() from 30 to 60 calls/second, thus resulting in twice as much collision detection, we

did not solve the problem, just pushed it away so we encounter it in a later situation where there

is an even faster-moving object or a smaller collider. Also, by increasing the FixedUpdate()

24

frequency, we are putting extra load on the CPU which, because of the reasons described earlier,

is a bad thing.

Solution 2: run a collision detection for the interpolated, in-between frames too

While this would improve the situation a lot, and would probably be enough for most games, this

would mean that if a game is rendered with 120 FPS, we would do 120 collision

detections/second, which would defeat the purpose of having a fixed timestep, we might as well

just delete the whole FixedUpdate() logic and run everything in the normal Update() method, so

this also not a good solution. Also, it still doesn’t guarantee that all collisions will be detected.

Solution 3: step-based movement logic

Implementation: Engine/Source/Entities/PhysicalEntity.cs

The real solution is step-based movement. For this, we will need to decide what is the smallest

collider that we guarantee to get detected, let’s pick 16x16 pixels as this seems to be enough for

the vast majority of video games. Although at first thought, the developers might think “I want to

detect a collision even if it’s just 1 pixel!”, hardly any game needs collisions this small. In real

life, colliders have a bigger size, 16x16 is the usual minimum which is easy to calculate but

accurate enough to provide a great gameplay experience.

The solution is the following: we will guarantee that it doesn’t matter how fast an object is

moving, we will always detect collisions that are at least 16x16 pixels. We are going to achieve

this by introducing a stepper logic: whenever we move an object on the screen, we will move at

most 16 pixels in one step, guaranteeing that collisions are always detected. If the velocity is

higher than this, we will move the object in several, smaller steps and do collision detection in

each step.

Examples speeds:

● The X speed of the object is 12: we will move the object 12 pixels to the right and do a

collision check.

● The X speed of the object is 16: we will move the object 16 pixels to the right and do a

collision check.

25

● The X speed of the object is 18: we will move the object 9 pixels 2 times to the right and

do a collision check in both steps.

● The X speed of the object is 36: we will move the object 12 pixels to the right 3 times and

do a collision in all 3 steps.

This will guarantee that we will never move more than 16 pixels in one step, which is the

minimum size of our colliders.

Also, we did not need to universally increase the FixedUpdate() frequency: the extra collision

detection will happen only for the objects that are moving fast, and only while they are moving

above the threshold. The rest of the game objects are completely unaffected and our

FixedUpdate() still ticks with 30 calls/second.

2.2 Rendering

Rendering happens through MonoGame’s SpriteBatch objects: a SpriteBatch is a group of 2D

images that are drawn with the same setting by the GPU. Since opening and closing a sprite

batch has a notable overhead, it is ideal to keep the number of sprite batches as low as possible

during gameplay, as well as the number of Draw() calls on the sprite batches. Although in theory,

it is possible to draw everything via one sprite batch, technically it’s rarely double as different

sprites have different settings that we want to apply when drawing. But a general rule of thumb is

the fewer sprite batches, the better.

Usage of sprite batches:

spriteBatch.Begin(...) // opening a new batch for rendering
spriteBatch.Draw(...) // adding sprites to the batch
spriteBatch.Draw(...) // adding sprites to the batch
spriteBatch.Draw(...) // adding sprites to the batch
…
spriteBatch.End();

The Draw() call of sprite batches can be parameterized in many ways, let’s see the most

important parameters of them:

26

● Texture2D texture: a Texture2D object that will be drawn on the screen. A Texture2D is

based on a Color array, Color is a struct that contains 4 channels ranging from 0 to 255:

Red, Green, Blue, and Alpha channels.

● Vector2 position: a Vector2 that describes where the object will be drawn

● float rotation: the rotation of the sprite

● Vector2 origin: the origin of the rotation

● float scale: the scale of the object

● SpriteEffects spriteEffects: different effects that can be applied for the sprite, like

horizontal or vertical flipping

● Rectangle sourceRectangle: when there is no need to draw the whole texture, we can

specify a rectangle that will tell the sprite batch which part of the texture we want to

draw.

A SpriteBatch can also be opened with many parameters, but I will only mention one of them

now: SpriteSortMode. This configures how the sprites are sorted within the same batch. We can

configure it to sort sprites based on the Depth parameter to set a draw order, but I’m using

SpriteSortMode.Deferred everywhere in the code. This means that MonoGame will not do any

kind of sorting when rendering, it will draw the sprites in the order of the Draw() call sequence

(without sorting). Using anything other than SpriteSortMode.Deferred has a performance impact,

as MonoGame would sort all the textures in every single Draw() call based on the Depth

variable, which, in case of many textures, is an expensive operation. I have implemented my own

way of sorting sprites, which is much more effective than MonoGame’s built-in sorting modes,

therefore I’m using SpriteSortMode.Deferred for each of my sprite batches. The sorting method

will be described later in the Layers section.

As I mentioned above, SpriteSortMode.Deferred means that the sprites will be drawn based on

the Draw() call sequence. Let’s take an example, 3 objects are drawn in the same position:

spriteBatch.Draw(object1.Texture, position, Color.White);

spriteBatch.Draw(object3.Texture, position, Color.White);

spriteBatch.Draw(object2.Texture, position, Color.White);

27

In this scenario, object2 will be drawn on top, object3 would be drawn behind object2 and

object1 will be behind object3, meaning that object2 will partially or fully cover object3 and

object1.

In the following, I will present the most important classes and components of the engine.

2.3 Camera

Implementation: Engine/Source/Camera/Camera.cs

The camera class provides basic functionalities that most games need: scrolling, zooming,

following an entity with the given parameters (to achieve smooth, natural camera movement),

and shake (in case of explosion and heavy objects landing). The class is more of an abstraction

than a real camera: it does not actually do rendering, but it provides a transformation matrix for

the renderer. In MonoGame, SpriteBatches can be rendered using transformation matrices, which

will drive how the current frame is displayed. The camera has a position, a zoom level, a limit

Rectangle (limits the camera scrolling between certain values, so it won’t show anything outside

of the intended gameplay area), a Viewport (we don’t necessarily want to render in the whole

window, we might want to add multiple cameras for local multiplayer games, and all players

would have their own Viewport on the screen) and using these, the camera calculates the

transformation matrix that is passed to the sprite batches in each frame, also taking into

consideration the different scroll speeds of the parallax backgrounds (parallax background are

background layers that scroll slower than normal layers, creating a sense of depth in the

background). Although the camera has a position that is updated when it’s tracking an entity, it

never moves in the world space, it’s only needed to create the transformation matrix for the

rendering. Passing this matrix into the sprite batches will result in a properly working game with

scrollable backgrounds and adjustable zoom level.

The camera also provides a secondary, static transformation matrix for UI elements: this is only

updated whenever the screen resolution is changed, otherwise, it’s static because UI elements are

on a fixed position on the screen and their size is also not affected by the zoom level.

28

2.4 Layers

Implementation: Engine/Source/Layer/Layer.cs and LayerManager.cs

Layers are groups of entities that must be drawn with the same settings. Each layer has its own

SpriteBatch, and each layer opens and closes the sprite batch and calls Draw(), Update(), and

FixedUpdate() method on the entities assigned to it. Each layer must be handled by and assigned

to the LayerManager. Whenever a new layer is created, the LayerManager sorts the layers to

guarantee proper draw order and whenever an object’s drawPriority is changed, the layer sorts

its list objects to guarantee proper draw order among its entities. This is much better than letting

MonoGame do the ordering: MonoGame would do it for each frame and every entity, while the

engine only does it when a new layer is created or an object’s drawPriority is changed, and both

of them are typically happening during startup. Ordering during gameplay almost never happens,

except when Y-sorting is turned on for the layer, but in that case, it’s inevitable. Y-sorting is a

method to draw entities based on the Y position. It can be useful for top-down games where, if

the hero is below a tree (Y coordinate is bigger than the tree’s Y coordinate), the hero should be

drawn on top and partially cover the tree, but when the hero is higher than three (Y coordinate is

smaller than the tree’s Y coordinate), the tree should be drawn on top and partially or fully cover

the hero. This gives a sense of depth. There is one optimization as well here: we only do

Y-sorting if any dynamic entity’s Y-position is updated.

Visual representation of Y-sorting

29

Layers are rendered in a strict order:

1. parallax background layer(s) (clouds, mountains, distant trees, etc.)

2. background layer (ground, obstacles, vegetation, etc.)

3. entity layer (player character, enemies, traps, etc.)

4. foreground layer (vegetation, environment, etc.)

As the rendering is happening in the above order, the foreground layer will be fully visible on the

screen, then the entity layer, then the background layers, and lastly the parallax layers. With the

layers, we can achieve a sense of depth: if we add a rock or a bush to the foreground layer, the

entities will be hidden by them (the hero can “hide” behind them for example), while entities

cover parts of the background layer, and the background layer covers parts of the parallax layers.

When the Pausable flag is set to true, layers can also be Paused, which means that the Update()

and FixedUpdate() methods are not going to be called on them. This is very useful when

displaying texts on the screen waiting for user input to continue: while the user is reading text,

the game is paused and the user can press a button to carry on playing.

Visual representation of the layers

30

2.5 Scenes

Implementation: Engine/Source/Scene/AbstractScene.cs and SceneManager.cs

The game can be divided into separate scenes that contain layers, UI, camera, and other

components that are necessary to run the game. The menus can be separate scenes, as well as

maps and areas of the game. In the example platformer game, the menus have their own scenes,

and both level 1 and level 2 are separate scenes. Each scene calls Update(), FixedUpdate(), and

Draw() on its layers, and updates and draws the UI as well.

Scenes can be created very easily with the engine: they must extend the AbstrctScene class and

there are methods to override to load assets and initialize game logic, and events to trigger when

a scene ends.

A SceneManager is responsible for handling the scenes, therefore each scene must be added to

the manager. Scenes not added to the manager are considered non-existent (and will be garbage

collected). The SceneManager handles scene transitions automatically, it loads and unloads

scenes whenever it’s necessary, so the game developer never has to care about manually cleaning

up after a scene has finished: the engine will destroy all object references and the garbage

collector will free up the memory. There is always one “active” scene that is being rendered

called CurrentScene, but multiple scenes can be updated next to the CurrentScene. This is

especially useful when making a top-down game: the character walks into a town where the

outside areas are one scene and the inside areas (taverns, houses, etc.) are separate scenes. While

the character is inside a tavern, for example, we still want the rest of the town to be updated: the

NPCs should carry on with their daily routines in the outside areas, the time of the day should

also pass, not just inside the tavern, so when the player walks out of the tavern, it won’t feel like

the world was paused while the character was inside.

Scenes can be configured for the most typical scenarios:

● To get updated while it’s not the current scene (like the previous top-down game

example)

● To use a loading screen: while the assets are being loaded, a loading screen will appear

instead of “freezing” the screen

31

● To preload all the assets for the scene at the game’s startup: some games benefit from

having all the scenes preloaded when starting the game. Like the above-mentioned

top-down game example, players rather wait a bit more at the game’s startup rather than

seeing loading screens every time they go into or out of the tavern. While, on the

platformer game example, one scene is one level, there is no need to preload them, the

player will be okay to see a short loading screen when they complete a level and go to the

next one.

Scenes can be started in 2 ways:

● LoadScene: loads all the assets, starts the scene, and unloads (destroys) the current scene.

In the platformer game, when going from level 1 to level 2, this method is called as we

will not go back to level 1 from level 2, so we can unload level 1 before moving to level

2.

● StartScene: when a scene is already loaded, and we just want another scene to be the

active scene, without unloading the current scene, this is the method to call. In the

top-down game example, going into and out of the tavern should use the StartScene for

the transition, as we need all the scenes to stay in memory and we want to be able to

switch between them without having to reload all the assets and losing their state.

2.5 Entity and PhysicalEntity

Implementation: Engine/Source/Entites/Entity.cs and PhysicalEntity.cs

The Entity class represents a game entity that can be updated and/or rendered by the engine. It

has two important bool flags: Active and Visible. If Active is true, the Update() and

FixedUpdate() functions of the entity will be called, if Visible is true, the Draw() function will

also be called. If the game developer does not want the entity to be visible, they can just set the

Visible flag to false, if it’s only visible and there is no logic attached to it, the Active flag can be

turned off.

Entities have a Transform class member, which contains the Position of the object, but it does

not have velocity! This means that this class should only be used for static objects which never

32

need to change their position in the world space. (like traps, pickups, etc.). Different kinds of

Components can be attached to an entity, they will be explained later. Each entity calls Update(),

FixedUpdate(), and Draw() on the components attached to it (whichever is applicable) whenever

the Active and/or Visible flags are true. The game developer can extend this class to create a

game object that they would like to display and/or update in the game. The child classes can

override Update(), FixedUpdate(), and Draw() methods to add their own logic.

PhysicalEntity extends from Entity, the main difference between them is in the PhysicalEntity

class, the Transform member also contains Velocity, and changing this will change the object’s

position. While this seems like a very minor difference between the 2 classes, movable objects

mean quite a lot of extra game logic to implement (forces, collisions, gravity), and this class

contains these. Also, if there is a collision component attached to the PhysicalEntity, collision

checks will be performed during each FixedUpdate() loop for these objects.

Physical entities can be moved by adding to/removing from the Transform.Velocity, which is also

corrected by horizontal and vertical friction values to provide a more natural feel of movement

for the player. When turned on, gravity is also applied to the Velocity. By adjusting the gravity

and the friction, it’s possible to finetune an object to give a different sense of mass: a bird's

feather will fall differently than a metal ball, and also, moving on ice is more slippery than

moving on solid ground. Both can be expressed by adjusting the friction and gravity values.

Later, this will be refactored by introducing a “mass” variable to finetune the object's behavior.

Entities and physical entities can also be in a parent-child relationship with each other: the child

will inherit the parent’s Position and their own Position and Velocity will be relative to the

parent’s. Also, it’s guaranteed that the parent will always be updated and rendered first, then the

children. Each object can have one parent and unlimited children.

Extending from these classes is an easy way to create objects in the game that can be moved

around and used for various gameplay purposes.

Also, both Entity and PhysicalEntity instances can have tags. Tags are used for various purposes,

for example, for collision optimization. Let’s say the player has a main character that they want

to collide against enemies. In this case, the player character class has to call

AddCollisionAgainst(“Enemy”) in the code and all the enemy classes should add

AddTag(“Enemy”) in their own code (having an abstract enemy class doing this and other

common things is a good technique). This way, whenever a collision event is triggered between

33

the hero and the enemies, the respective callbacks will be called, but collision checks won’t be

performed unnecessarily for objects that no one is interested in.

2.6 Components

Implementation: Engine/Source/Components/IComponent.cs and ComponentList.cs

Components are objects that have a certain responsibility/functionality and can be attached

to/detached from all types of entities, independently from each other. They all share a common

interface called IComponent, and they can also implement IUpdateableComponent or

IDrawableComponent, which marks if the component needs to be included in the owner entity’s

Update()/FixedUpdate() and/or Draw() loops.

Currently implemented components, all will be detailed later:

● Sprite: represents a 2D image that will be rendered

● AnimationStateMachine: a state machine that plays animations based on the owner’s state

(also rendered)

● BoxCollisionComponent/CircleCollisionComponent: collision components for dynamic

collision detection

● BoxTrigger: a trigger component that fires whenever an entity’s position is inside the

trigger.

● AIStateMachine: a state machine that can be used to efficiently implement AI

These can be added and removed as needed for each entity, and where it’s applicable (sprites,

animations, box collision components, and triggers) moves together with the entity as well. For

example, if an entity needs a static image, a Sprite component can be attached to it and the

engine will render it and if it also needs circular collision detection, a CircleCollisionComponent

can also be attached (and removed if not needed anymore).

If a CollisionComponent is attached to the entity and the tags are added properly, by simply

overriding the OnCollisionEnter(...) and OnCollisionEnd(...) methods of the superclass, the

object will be notified whenever a collision event occurred/ended with the necessary details.

Similarly, when a trigger component is attached, by overriding OnEnterTrigger(...) and

34

OnLeaveTrigger(...) methods of the superclass, the object will be notified when a trigger has

fired/ended with the necessary details.

This ensures that the developer has fine control over what is happening with the object, but it’s

not overburdening and very simple to use and understand.

2.7 Collisions

Implementation:

Single-pont collision: Engine/Source/Entities/PhysicalEntity.cs

Dynamic collisions: Engine/Source/Physics/CollisionEngine.cs and

Engine/Source/Physics/Collision/*.cs

There are 2 parallel collision detection methods running in the engine: a single-point collision

system and a dynamic collision system.

The single-point collision system is a very cheap, but very effective way to check for collisions

against a dynamic entity and a static entity, like the player character and the static parts of the

environment. The idea is the following: the gameplay area is split up to a 2D grid and each

object has a GridPosition maintained, which is an integer and returns in which grid cell is the

object currently located. For dynamic objects (that are extended from PhysicalEntity), this grid

position is updated with the movement update logic. The check is simple: check the left, right,

top, and bottom grids around the dynamic character whether it contains a collider, and if it does,

we zero out the velocity in that direction. This is very fast to compute and accurate enough for

the majority of video games for environmental collision.

Dynamic collisions are different, it’s a collision calculation between two dynamic objects.

Collision components must be attached to the entities to get detected, and the

AddCollisionAgainst(string tag) method will trigger a collision check for the given object.

Respectively, we have to add the same tag to the objects that we want to detect. If the object is

not colliding against any tags (AddCollisionAgainst never called) it means that there is no need

to do collision checks for this object, but it can still be detected by other objects if it has a tag

that someone collides against. This is an optimization technique to do as few collision checks as

possible against objects, as it’s a very expensive operation and we want to avoid doing it

unnecessarily.

35

Currently, 2 types of collision components can be added to an entity: rectangle and circle, the

shape of most objects can be efficiently approximated with these 2 primitives, but more shapes

will be added in the future (like a triangle) for more accurate collisions. The collision between

the shapes is calculated based on their position, and it’s an accurate collision, meaning that

whenever the shapes touch/intersect, a collision callback will be triggered.

Spatial hashing will also be implemented later: another level of collision detection optimization:

collisions will only be checked against objects that are relatively close to each other.

2.8 Triggers

Implementation: Engine/Source/Physics/Trigger/AbstractTrigger.cs and BoxTrigger.cs

Triggers are similar to dynamic collisions, but it’s simpler than that: it’s a shape against a point.

Currently, only rectangular trigger is implemented and usually, it’s enough for most games, but

for special needs, circle shape will also be added later. The collision check is simple: we check

whether the other object’s position is inside the bounds of the shape and do the respective

callbacks. Since it’s based on the position, which is a point, it does not check against the visible

shape of the objects, but it’s very cheap to calculate and good enough for many scenarios (like

walking into a room or an area that opens a door or being in a certain vicinity of an enemy).

2.9 Sprite

Implementation: Engine/Source/Graphics/Sprite.cs

Sprites represent 2D images that, when attached to an entity, can be rendered. It contains the

Texture2D object that is drawn, uses the position of the owner entity (plus an optional offset),

rotation, sprite effects, source rectangle, and some other useful parameters to customize

rendering.

Sprites are written in a way that when the input image is provided, it will automatically process

them to find the smallest source rectangle that is necessary to render it which can also be used as

a default box collision shape. It’s also possible to generate the circumscribed circle for circle

collision components.

36

2.10 Animations

Implementation: Engine/Source/Graphics/Animations/*.cs

SpriteSheetAnimation

2D animations are usually stored on one image called sprite sheet: each frame of the animation is

put into the same image. The format is usually PNG as it supports transparency, which is very

useful for video game art. The image is logically split into rectangles: for example, an animation

with 15 frames can be 2x8 rows: the first row has an animation frame in each rectangle, the

second row has animation frames in 7 rectangles, the last rectangle is empty. The

SpriteSheetAnimation class can determine the size of the rectangles if they are all powers of 2,

but if not, this rectangle size can also be provided manually. Also, the class automatically detects

which rectangles have an image in them and automatically constructs the animations from the

non-empty frames, the game developer only needs to provide the desired frame rate of the

playback. Also, callbacks can be defined for each animation, for example, to trigger an event

when the animation starts/ends or when it’s at a certain frame. Animations can be parameterized

in several ways, like enable/disable looping, pause condition, etc.

Sprite sheet example: the carrot’s movement

SpriteGroupAnimation

It’s the same as SpriteSheetAnimation, the only difference is that the input source of the

animation frames is not one sprite sheet, but multiple separate images.

37

AnimationStateMachine

The animations are driven by the AnimationStateMachine class. Each animation has to be added

to a state machine, together with a unique name, condition, and an optional priority.

The condition is the most important part of this class: we can specify which state the entity has to

be in to play the given animation.

Let’s take an example, we have 6 animations: running left, running right, jumping left, jumping

right, falling left, falling right.

Inside the class’ constructor (to handle movement, the class must be inherited from

PhysicalEntity), we have to add the following code:

AnimationStateMachine anim = new AnimationStateMachine();

AddComponent(anim);

SpriteSheetAnimation runningLeftAnimation =

new SpriteSheetAnimation(Assets.GetTexture(“CarrotRunLeft”), 24);

SpriteSheetAnimation runningRightAnimation =

runningLeftAnimation.CopyFlipped();

//… assuming we have prepared the rest of the animations…
SpriteSheetAnimation jumpLeftAnim = …
SpriteSheetAnimation jumpRightAnim = …
SpriteSheetAnimation fallingLeftAnim = …
SpriteSheetAnimation fallingRightAnim = …

// let’s add the left movement

bool isMovingLeft() => IsOnGround && Velocity.X != 0 && CurrentFaceDirection ==

Direction.WEST;

anim.RegisterAnimation(“RunningLeft”, runningLeftAnimation, isMovingLeft);

// right movement with priority

bool isMovingRight() => IsOnGround && Velocity.X != 0 && CurrentFaceDirection ==

Direction.EAST;

anim.RegisterAnimation(“RunningRight”, runningRightAnimation, isMovingRight);

// left jump

bool isJumpingLeft() => !IsOnground && Velocity.Y <= 0 && CurrentFaceDirection ==

Direction.WEST;

anim.RegisterAnimation(“JumpingLeft”, jumpLeftAnim, isJumpingLeft);

// right jump

38

bool isJumpingRight() => !IsOnground && Velocity.Y <= 0 && CurrentFaceDirection ==

Direction.EAST;

anim.RegisterAnimation(“JumpingLeft”, jumpRightAnim, isJumpingRight);

// falling facing left

bool isFallingLeft() => !IsOnground && Velocity.Y > 0 && CurrentFaceDirection ==

Direction.WEST;

anim.RegisterAnimation(“FallingLeft”, fallingLeftAnim, isFallingLeft);

// falling facing right

bool isFallingRight() => !IsOnground && Velocity.Y > 0 && CurrentFaceDirection ==

Direction.EAST;

anim.RegisterAnimation(“FallingRight”, fallingRightAnim, isFallingRight)

Using this technique, there is no need to bind animations to keypresses or any other user-related

event: the state machine will play the animation if the condition is true. If the condition is true

for several animations at once, an optional priority parameter can be added to play the one with

the highest priority. The greatness in this is that it doesn’t matter whether an AI controls the

character, or the player, or none of them (like an enemy falling off from an edge), it’s always the

right animation that will be played. Once they are set up in the constructor, the game developer

can forget about them. There is, of course, a way to manually trigger animations (like attack or

damage animations), in that case, their condition must simply return false and they will never be

picked up automatically.

2.11 AI

Implementation: Engine/Source/AI/AIState.cs and AIStateMachine.cs

AIStateMachine together with the AIState class supports writing and running artificial

intelligence. Both of these classes expect generic parameters, which is the type of entity the AI

controls. Each AI state machine controls one entity and can have several AI states added to it. As

the entity switches between AI states, the state machine will be running the respective state. AI

states written by the game developer must extend the AIState<T> class.

Let’s look at how the carrot’s AI works in the demo platformer game.

39

Implementation of the carrot enemy:

GameSamples/Platformer/Source/Entities/Enemies/Carrot.cs

Implementation of the Bresenham line:

Engine/Source/Physics/Bresenham/Bresenham.cs

Source of the Bresenham line: https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

The carrot has an AIStateMachine component added to it with the following AI states:

CarrotPatrolState: patrols on an area until it reaches a collider or an edge, then it turns back

CarrotChaseState: when the carrot notices the player, it starts following it. When the player is

above the carrot (on a platform, for example), the carrot will stop and wait for the player to jump

down. As long as the carrot sees the player, it will chase, if it doesn’t see the player, it switches

back to CarrotPatrolState.

The carrot has the following components attached:

● AIStateMachine to run the above mentioned, simple AI

● AnimationStateMachine to play the animations

● BoxCollisionComponent: to detect whether the carrot is colliding with other entities

● BoxTrigger: to detect whether the player is near the carrot.

The BoxCollisionComponent uses the animation’s bounding box to check if the carrot collides

with other entities.

The BoxTrigger is a much bigger rectangle: it’s multiple times the size of the carrot in each

direction, and if the player’s position is inside this trigger, the carrot will do a raycasting to check

whether it actually sees the player or not, and if it sees the player, it will start chasing.

The ray casting happens using a Bresenham line. A Bresenham line algorithm is a very fast

algorithm to draw a pixel-perfect line between 2 points. It only works with integers, so it runs

very fast and is easy to implement based on the pseudo-codes available online from different

sources like Wikipedia.

While the player is inside the carrot’s box trigger, the carrot will continuously draw Bresenham

lines (always one at a time) from its eyes’ position to the player’s position. While drawing the

line, for each newly calculated point of the line, we check whether there is an environmental

40

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

collider on the grid on the point’s position. If there is a collider, it means that although the player

is close to the Carrot, it is behind a wall or some other static environmental collider that blocks

the vision and the Carrot cannot see the player. If the line can reach the player without

encountering any environmental collider, it means that the carrot can see the player and will start

chasing. If the player manages to escape from the box trigger of the carrot, the raycasting will

stop and the carrot starts patrolling again.

As well as any other game logic-related code, the collision and trigger checks, and the

Bresenham algorithm also runs in the FixedUpdate() loop, so we will not calculate it more than

30 lines/second for each carrot. This is frequent enough for fluid AI behavior, but still very easy

on the CPU.

The Bresenham line can also be used for several purposes in game development:

● Drawing primitives (lines, polygons, even circle)

● AI line of sight (like the carrot)

● Calculating illuminations of light sources: at the game’s or scene’s startup, draw

Bresenham lines in 360 degrees and decrease the pixel intensity as we are getting further

away from the center, cache result for static objects, and calculate it dynamically only for

the most important dynamic objects

● Laser beams: as opposed to regular bullets, laser beams are usually considered immediate

and do not need collision checks over time to see if it hits the enemy. When a laser beam

is emitted from the player, create a Bresenham line to check whether the points of the line

would reach an enemy. This happens in one FixedUpdate() call, so time is not a factor

here, nothing will move on the screen while the line is being calculated. The line itself

could also be rendered to display it like a laser beam, but the visual representation can

happen in many ways.

41

The player is outside of the carrot’s trigger (the big red box), no rays are casted

The player is inside the carrot’s trigger, rays are casted with the Bresenham line algorithm, but
the carrot can’t see the player as there is a wall between the player and the carrot (blue line)

42

The player is inside the carrot’s trigger, rays are casted with the Bresenham line algorithm, and
the carrot can see the player (red line)

2.12 External map editor integration

Implementation of the map parsing: Engine/Source/Level/Map/LDTKMap.cs

Implementation of the TileGroup: Engine/Source/Graphics/TileGroup.cs

While creating small, simple test scenes is double from source code, creating big, complex

maps/worlds are barely possible and it takes away the opportunity from non-programmers (like

environment artists and level designers) to productively participate in the video game

development process. This is one of the main reasons why most video game engines have a UI,

so people can create levels on a ‘what you see is what you get basis.

For engines that do not have a UI, it’s still possible to design levels/worlds visually by using

external map editor software. Many of them are open source and completely free to use for any

purpose, so I’ve decided to natively support my favorite open source level editor called LDtk.

Most level editors, including LDtk, works in the following manner:

43

The user is working on a UI, where they can load all the tile sheets containing the textures. The

world space is divided into a 2D grid (usually with a configurable size) and the user can assign

textures (or parts of textures) to each position. Then the result is usually stored in some

structured text file like XML or JSON. LDtk works based on layers, and (among many other

features) it also supports creating entities with properties using the common data types (int,

string, boolean, enum, float, etc…). So not only the maps can be edited with it, but also abstract

entities can be created and configured, like putting an enemy on the map and setting what items

it will drop when destroyed, or how much health it has. The whole map, including all the layers

and entities, can be exported to a JSON file, which will describe which part of the texture is on

which position of which layer, where the entities are, and what properties they have.

By parsing this JSON, the engine can build the map, place, and configure the entities and layers.

For example, if the engine finds an entity with the name “Carrot”, it will create a new instance of

the Carrot class and configure it with the parameters parsed from the JSON.

I’ve implemented certain naming conventions that, when followed in the editor, will be

recognized by the code and processed properly:

● Parallax layers should be named Parallax0, Parallax1… The engine will render them with

parallax scrolling.

● Background layers should be named Background0, Background1… The engine will

know that it should handle them as background layers and merge them together (this will

be described in details later)

● Foreground layers should be named Foreground0, Foreground1… The engine will know

that it should handle and render them as foreground layers and merge them together (this

will be described in details later)

● The static environmental collision layer must be called Colliders, so the engine will know

how to build the collision grid. This layer is not rendered (only for debugging purposes).

● The entity layer must be called Entities, so the engine can return the list of entities for the

game developer to handle

The numbers at the end of the layers’ names also define the rendering order.

44

While the parallax, background, foreground, and collision layers are automatically handled by

the engine, the entities can be named as the video game developer wants them, and parsing them

will have to happen in the game’s code itself.

However, it’s not necessary to follow these naming conventions when parsing the map, but the

game developer needs to provide their own implementation for the parsing then.

Parsing the map from the JSON:

LDtk outputs a JSON that will (among many other things) will provide the relative path of the

tilemap files used and will also tell which position of the tilemap goes to which position of each

layer. The source code needs to recognize this and render the background, foreground, and

parallax layers.

To understand what the next solution is, we have to know SourceRectangles: SourceRectangle

defines a certain rectangular part of the texture. By default, it has the size of the whole texture,

but we can override it to display just a portion of a texture.

SourceRectange(x, y, width, heigh).

For example, if we have a 32x32 texture, and we want to display the top right 16x16 part of it,

we have to pass the following source rectangle for the sprite batch:
SourceRectange(16, 0, 16, 16)

The performance tests were conducted on a high-end gaming PC in 4K resolution and were

always using the exact same scene setup from the same JSON file.

Solution 1

The obvious implementation: for each grid position, let’s create a new Entity, create a copy of the

texture portion in memory to display in a certain position of the background. As even a small

map is typically divided into thousands of grids for each layer, this resulted in thousands of

entities and the same amount of small textures and Draw() calls created. This had a very bad

performance, the test scene produced about 300 FPS.

45

Solution 2

Let’s not create a new texture for each entity, just pass a different SourceRectangle to each of

them and all should use the same sprite sheet texture instead of their own small texture portions.

This yielded much better results, the test scene produced around 700 FPS, as for MonoGame,

switching to render between different Texture2D instances has an overhead. That’s why it’s

recommended to use sprite sheets, so that internally, most things can be rendered by referencing

the same Texture2D instance and just pass a different source rectangle. But it was still too slow,

we were still creating thousands of entities and so having thousands of Draw() calls for each in

each loop.

Solution 3

We have to recognize that the Background, Foreground, and Parallax layers are completely

static, nothing will ever change position relative to each other within the same layer.

Optimization: let’s merge the tiles in each layer into just one big Texture2D instance and just

have one entity for each layer.

This is how TileGroups were born in the engine: a TileGroup is a texture builder tool that can

merge texture fragments into one texture. Simply add a Texture2D or a Color[] into a position,

and when there are no more textures to add, calling the GetTexture() method will merge these

together into one Texture2D instance that can be used as a texture, without the need to overwrite

the source rectangle.

This has decreased thousands of entities, Texture2D instances, and Draw calls to only 10 (4

parallax layers, 4 background layers, and 2 foreground layers). This has brought tremendous

performance increase as it has also decreased the number of Draw() calls from thousands to 10:

the test scene produced an average of 1700 FPS.

Solution 4

Although the previous solution is already good enough, a game engine can never render too fast,

so there was one additional improvement implemented:

We have to notice that it’s not just that the individual tiles are static within each layer, but also

the static layers (background and foreground layers) are completely static to each other!

46

An upgrade has happened to the TileGroup class: it’s now possible to specify what to do when a

texture already exists on a given position with an enum called BlendMode. By using

BlendMode.Merge, the new texture will draw every non-transparent pixel on top of the old

texture. Similarly to opening 2 different sized images in an image editor, placing the small image

onto the bigger one and saving the result merged into a new image file, but TileGroup also takes

transparency into consideration to preserve the existing texture’s pixels on every position where

the new texture has no opaque pixels.

This way, it was enough to create just 1 entity for all background layers and 1 entity for all

foreground layers. This has decreased the number of entities, and so the Draw() calls and

Texture2D instances to 6: 4 created for the parallax layers, 1 for the background layers, and 1 for

the foreground layers. Unfortunately, we can’t merge all the parallax layers into one texture as

their relative positions are changing with the camera movement due to the different scroll speeds.

Apart from constructing textures for environments, TileGroups are useful for all entities where

the Sprite is composed of multiple textures or texture portions: by merging these together in a

TileGroup, we can create one Texture2D instance to speed up the rendering.

Editing the map using the tile sheet (bottom left corner)

47

Visual representation of the entities placed on the map

List of foreground, background, and parallax layers parsed by the engine

2.13 UI

Implementation:

Engine/Source/UI/*.cs

User interfaces are important parts of video games: they allow the creation of menus and provide

feedback for the players about how they are performing and in what state the game is.

The main properties of UI elements:

● They have no game logic attached, they usually just respond to input events and/or

display different values

● Some of them do not scroll with the rest of the game, their position is fixed in the camera

space

48

● They are not affected by the camera zoom level, although their scaling must be

recalculated when changing display resolution

● They are running on their own, dedicated layer called UILayer

● They can be static or follow an entity (like a text bubble for the hero’s thoughts)

● They can pause the game waiting for user input or disappear after a configured time

● They are always drawn on top of everything else, nothing can hide a UI element on the

screen (except for another UI element)

Different type of UI elements implemented:

● Text output field (TextField.cs): not used in the demo game

● Image display (Image.cs): a static image, used when displaying the coin icon on the top

left corner

● Selectable image (SelectableImage.cs): this can contain 2 images: an unselected and

selected image, the appropriate one will be displayed based on whether the IsSelected

flag is true.

● Selection list (MultiSelectionImage.cs): contains multiple images, the user can change the

selection from a list of values, like scrolling through different screen resolution options.

● Static popups (StaticPopup.cs): a popup text and/or image that does not follow any entity

and can scroll with the world. It can pause the game to wait for user input to continue or

disappear after a timeout

● Dynamic popups (DynamicPopup.cs): scrolls with the world and can follow entities.

They will disappear after a timeout.

Sounds effects can be attached to UI elements when applicable, for example, to play a sound

when the mouse hovers over or the user clicks on the item.

49

2.14 Entry point of the game

Implementation: Engine/Source/Game/MonolithGame.cs

When creating a game with the engine, the entry class of the game must be a class that extends

MonolithGame. This class does the initial configuration for the engine and MonoGame. By

overriding the appropriate methods, the game developers can load all the assets they want and do

any initial configuration.

2.15 Audio

Implementation: Engine/Source/Audio/AudioEngine.cs

The AudioEngine static class can be used to play audio files. It supports audio tags, currently 3

types: sound, music, and effects. The volume of these 3 categories can be adjusted individually

and they can also be muted. The playback supports looping (background music, for example),

pause and resume.

2.16 Assets

Implementation: Engine/Source/Asset/Assets.cs

The Assets is a static class that loads assets like images and audio files. It also caches them and if

an asset is already loaded, it returns from the cache. A simple, convenient way to access all the

assets from anywhere in the source code and reuse the existing instances for better performance.

50

3. Other noteworthy classes

3.1 Timer
Implementation: Engine/Source/Util/Timer.cs

An extremely useful static class that allows different timed events: set a timer for a property (like

a cooldown), repeat an action for a period of time, or invoke a callback after a delay. It can also

save us from writing a lot of boilerplate code in different classes where we want to code a

time-driven behavior. It’s updated in the normal Update() loop for high accuracy.

3.2 MathUtil
Implementation: Engine/Source/Util/MathUtil.cs

A small, static util class that contains the implementation of the most used math

concepts/algorithms for 2D game development like geometry, algebra, etc.

3.3. Logger
Implementation: Engine/Source/Util/Logger.cs

A small, static class responsible for logging: it can log to the standard output as well as to a file

using different log levels (info, debug, warning, error).

3.4 AssetUtil

Implementation: Engine/Source/Util/AssetUtil.cs

An internal static helper class to support loading and processing assets: it can load images,

sounds and also auto-generate rectangular bounding boxes and circumscribed circles based on

the images to use for rendering and physics purposes.

51

4. The future of the project

This engine isn’t just my thesis work, it’s also my personal project and I will keep working on it

in the future. I would like to create a 2D video game engine that game developers love and use,

and which brings joy to the player. I wouldn’t just like to finish this engine, but I would like to

use it to release the games that I’m planning, so there is still a long road ahead of me.

Two very important components are still to be implemented: object pooling and a particle

system.

4.1 Object pooling

Creating new objects is very common during gameplay, but many of them are needed only for a

short period of time, after which they will be garbage collected. But creating new objects and the

garbage collector run have a performance impact, so instead of constantly creating and

destroying objects, let’s store them in a pool, from which we can take one if necessary and when

we don’t need it, we can put it back in the pool. This way, we can prevent frequent garbage

collection and the potential performance impact on object creation.

4.2 Particle system

A particle system is a component responsible for displaying particles. Particles are usually

groups of smaller sprites displayed in a similar manner, like raindrops, snowdrops,

fragments/splinters leaving the center of an explosion, bullet shells, dust, smoke, etc...

Particles are usually not interactive and emitted using emitter classes. The way of emitting them

is usually configurable: they can have a lifespan (after which they will get destroyed), the alpha

value can be changed during the lifespan, gravity may or may not be applied to them, the shape

and direction of the emission can be specified, their rotation and position can change with time,

and most of these properties can usually be randomized to create believable particle effects. But

because the count of the particles can be tens of thousands on the screen, the particle system

must be written to aim for the highest possible performance, therefore it must be written from the

ground-up as a separate component.

52

5. Acknowledgements

Creating a video game is a tremendous amount of work, even more so when it’s being developed

in parallel with the engine. I would like to thank Dr. Peter Bodnar for letting me choose this topic

as my thesis. I’ve had an amazing time developing this code, the journey was very educational

and it’s far from over.

Furthermore, I would like to thank the whole independent video game developer community for

the knowledge they keep sharing online, especially for:

● The MonoGame community for all the help they provide on their forums:

https://community.monogame.net/

● Sébastien “deepnight” Benard for sharing decades of knowledge and work online with

source codes and tutorials, and his community on his Discrod channel:

https://deepnight.net/

6. Literature used for the work

● https://gafferongames.com/post/fix_your_timestep/

● https://deepnight.net/tutorials/

● https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

53

https://community.monogame.net/
https://deepnight.net/
https://gafferongames.com/post/fix_your_timestep/
https://deepnight.net/tutorials/
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Declaration

I, Lajos Rajna, hereby declare that my bachelor’s thesis was created at the University of Szeged,

Faculty of Science and Informatics, Department of Image Processing and Computer Graphics to

acquire my Computer Science bachelor’s degree. I also declare that this work has not been

defended earlier in any other training program, it’s exclusively the result of my own work and

I’ve used only the referenced sources (literature, tools, etc.). I acknowledge that my bachelor’s

thesis will be placed in the library of the University of Szeged, Faculty of Science and

Informatics among the books to read in place.

2021.05.16 Lajos Rajna
Signature

54

